How to Plot Time on Y-Axis In '%H:%M' Format In Matplotlib?

4 minutes read

To plot time on the y-axis in '%H:%M' format in matplotlib, you can use the matplotlib.dates module to format the tick labels. First, convert your time data to datetime objects using the datetime module. Then, create a DateFormatter object with the desired time format '%H:%M'. Finally, set the formatter for the y-axis using ax.yaxis.set_major_formatter(formatter) where ax is your Axes object. This will display the time in the specified format on the y-axis of your matplotlib plot.


How to properly display time as '%h:%m' in matplotlib?

You can display time as '%h:%m' in matplotlib by using the DateFormatter class from the matplotlib library. Here's an example code snippet that demonstrates how to achieve this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import matplotlib.pyplot as plt
from matplotlib.dates import DateFormatter
import matplotlib.dates as mdates
import datetime

# Sample data
times = ['10:30', '11:45', '12:15', '13:30']
values = [15, 20, 25, 30]

# Convert times to datetime format
times = [datetime.datetime.strptime(time, "%H:%M") for time in times]

# Plotting
fig, ax = plt.subplots()
ax.plot(times, values)

# Format x-axis as '%h:%m'
date_format = DateFormatter('%H:%M')
ax.xaxis.set_major_formatter(date_format)

# Rotate x-axis labels for better readability
plt.xticks(rotation=45)

plt.show()


In this code snippet, we first convert the time strings to datetime objects using datetime.datetime.strptime() method. Then, we create a DateFormatter object with the desired time format ('%H:%M') and apply it to the x-axis using ax.xaxis.set_major_formatter(). Finally, we rotate the x-axis labels for better readability using plt.xticks(rotation=45).


What is the method for plotting time in '%h:%m' format in matplotlib?

To plot time in the '%h:%m' format in Matplotlib, you can follow these steps:

  1. Import the necessary libraries:
1
2
3
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from datetime import datetime


  1. Create a list of datetime objects representing the time data:
1
2
3
4
5
6
time_data = [
    datetime.strptime('10:15', '%H:%M'),
    datetime.strptime('11:30', '%H:%M'),
    datetime.strptime('12:45', '%H:%M'),
    # Add more datetime objects as needed
]


  1. Create a list representing the values/data that will be plotted:
1
values = [10, 20, 30]  # Example data, replace with your actual data


  1. Plot the data on a graph with the x-axis formatted in '%h:%m':
1
2
3
4
5
6
plt.figure()
plt.plot(time_data, values)

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))

plt.show()


By following these steps, you should be able to plot time in the '%h:%m' format in Matplotlib.


How to set the time format to display '%h:%m' in matplotlib?

You can set the time format to display '%h:%m' in matplotlib by using the DateFormatter class from the matplotlib.dates module. Here is an example code snippet to demonstrate how to achieve this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

# Create some sample data
times = ['10:15', '11:30', '12:45', '13:00']
values = [5, 10, 15, 20]

# Convert the time strings to datetime objects
times = [mdates.datestr2num(time) for time in times]

# Create a plot
plt.plot_date(times, values, linestyle='-', marker='o')

# Set the x-axis format to display '%h:%m'
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))

plt.show()


In this code snippet, we first convert the time strings to datetime objects using the datestr2num function from the matplotlib.dates module. Then, we create a plot using the plot_date function and set the x-axis format to display '%h:%m' using the DateFormatter class with the '%H:%M' format string. Finally, we display the plot using the show function.


How to format time in '%h:%m' in matplotlib?

To format time in '%h:%m' in matplotlib, you can use the DateFormatter class from the matplotlib.dates module. Here's an example code snippet that demonstrates how to format time in '%h:%m':

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import pandas as pd

# Sample data
dates = pd.date_range('2022-01-01', periods=24, freq='H')
values = range(24)

# Create a plot
fig, ax = plt.subplots()
ax.plot(dates, values)

# Format the x-axis tick labels
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))

plt.show()


In this code snippet, we first import the necessary libraries and create some sample data (dates and values). We then create a plot using the sample data. Finally, we format the x-axis tick labels using the DateFormatter class with the format '%H:%M', which displays the hours and minutes of the datetime objects as tick labels.


You can customize the format string as needed to display the time in the desired format.


What is the recommended method for displaying time in matplotlib?

The recommended method for displaying time in Matplotlib is to use datetime objects to represent timestamps, and then use Matplotlib's date plotting functionality to format and display time on the plot.


Here is an example of how to display time on a plot in Matplotlib using datetime objects:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
import matplotlib.pyplot as plt
import numpy as np
import datetime

# generate some data
x = np.arange(0, 10, 0.1)
y = np.sin(x)

# create datetime objects for timestamps
timestamps = [datetime.datetime(2021, 1, 1) + datetime.timedelta(days=i) for i in range(len(x))]

# plot the data with time on the x-axis
plt.figure()
plt.plot(timestamps, y)
plt.gcf().autofmt_xdate()  # rotate x-axis labels for better readability
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Plot with Time on the x-axis')
plt.show()


This code snippet creates a simple plot of sine function values against timestamp data using datetime objects. By using datetime objects for timestamps, Matplotlib can automatically format the timestamps appropriately on the x-axis of the plot.

Facebook Twitter LinkedIn Telegram

Related Posts:

To plot periodic data with matplotlib, you can use the numpy library to generate the data points for the x-axis and y-axis. Since periodic data repeats at regular intervals, you can specify the range for the x-axis as the period of the data. Next, create a fig...
To plot a 2D intensity plot in matplotlib, you can use the imshow function from the matplotlib.pyplot module. First, import the necessary libraries by using import matplotlib.pyplot as plt. Then, create a 2D array of intensity values that you want to plot. You...
To round date format on the x-axis in matplotlib, you can use the DateFormatter class from the matplotlib library. This allows you to specify the date format you want to display on the x-axis in a rounded format. For example, you can round dates to the nearest...
To plot a square function with matplotlib, you can define the function using numpy, create an array of x values, calculate the corresponding y values using the square function, and then plot the function using matplotlib's plot function. Finally, you can c...
To plot a list of byte data with matplotlib, you will first need to convert the bytes to integers using the ord() function in Python. Once you have the integer values, you can use matplotlib to create a line plot, scatter plot, bar plot, or any other type of p...